
SAZyzz: Scaling AZyzzyva to Meet Blockchain Requirements

Nasrin Sohrabia,∗, Gauthier Voronb, Vincent Gramolib, Zahir Taria, Jakapan Suaboota

aCentre of Cyber Security Research & Innovation (CCSRI), School of Computing Technologies, RMIT University, Melbourne, Australia
bSchool of Computer Science, Sydney University, Sydney, Australia

Abstract

We present SAZyzz, a leader-based Byzantine Fault Tolerant consensus protocol for partially synchronous networks. SAZyzz
exhibits a better performance/scalability compared to the state-of-the-art leader-based BFT consensus protocols. It is built on top
of AZyzzyva (i.e., the protocol that addressed the Zyzzyva’s safety violation). The tree-based communication model adopted in
SAZyzz enables the protocol to enhance the scalability of AZyzzyva. Additionally, it reduces the communication complexity to
O(log N) in two paths of the protocol.

The tree-based topology has been however argued to incur limitations when used to designing BFT consensus protocols. This is
due to a strong assumption tree-based protocols are built upon, where the internal nodes of a tree are required not to be Byzantine,
which leads to a trade-off between tolerating Byzantine faults and better performance/scalability. This paper shows that, with the
current technological infrastructures available for industrial systems, such as Trusted Execution Environment (TEE) and Public Key
Infrastructure (PKI), this assumption is realistic.

SAZyzz comprises of fast-path and backup-path, each of which has two modes: simple mode and scalable mode. We first at-
tempted to remove the strong honest client assumption of AZyzzyva (as it can compromise the entire system if a client is malicious)
by involving the primary in making commit decisions. This modification was introduced as the simple mode in SAZyzz. Then, we
applied the tree-based communication model to address the scalability issue by introducing the scalable mode to the design. To
reach a consensus in a scalable way, SZAzyzz has therefore the followings: Fast Path Simple Mode (FPSiM), Fast Path Scalable
Mode (FPSCaM), Slow Path Simple Mode (SPSiM), and Slow Path Scalable Mode (SPSCaM). To show the efficiency and feasi-
bility of SAZyzz’s adoption for blockchain systems, we also designed and implemented the ZyConChain blockchain system based
on SAZyzz. The evaluation results provided in this paper show that SAZyzz can significantly improve the performance/scalability
of blockchain systems.

Keywords: Blockchain, Distributed Computing, Consensus Algorithms, Security

1. Introduction

The emergence of the blockchain technology paved a new
way on designing decentralized and distributed systems, thereby
creating a new line of research for both academia and indus-
try. Based on the extensive studies conducted on this tech-
nology, scalability has been identified as a major limitation of
blockchain systems [10, 23, 21, 25, 8, 44, 28, 42, 9, 35, 38,
37, 20] that researchers have attempted to address. This funda-
mental issue has been rooted in the consensus component of the
blockchain, which is a core component of the technology. De-
spite the significant work carried out in this area, blockchain’s
scalability is still far from meeting the expectations of today’s
data intensive generic applications. Hence, this research aims to
address the bottleneck by proposing a scalable consensus pro-
tocol. Specifically, we focus on one of the existing consensus
algorithms, called AZyzzyva [7], and improve its scalability to
become suitable for blockchain protocols.

The consensus problem is well-known and well-studied in
distributed systems. The problem is that replicas (i.e., the nodes

∗Corresponding author
Email address: s3732890@student.rmit.edu.au (Nasrin Sohrabi)

in a given system) require to agree on a data value (e.g., a block
of data) while some of these replicas might be faulty or unreli-
able by experiencing either a crash failure or a Byzantine fail-
ure [40, 24, 41, 32, 17]. Hence, to reach an agreement among
these potentially faulty nodes, the system requires a consensus
protocol that is Crash Fault Tolerant (CFT) or Byzantine Fault
Tolerant (BFT). Despite few exceptions (e.g., [20]), one of the
major drawbacks in consensus protocols is that, when the num-
ber of replicas increases, the system’s performance degrades
tremendously.

Over the last four decades, several solutions have been pro-
posed to solve the consensus problem. These solutions are
categorized into three types based on the network synchrony
model [22, 9, 41, 40, 6], i.e., synchronous network, partially
synchronous network, and asynchronous network. In this work,
we focus on partially synchronous networks, where there is an
unknown bounded time ∆ for message delivery. This means
messages are guaranteed to be delivered but there is an un-
known delay for delivery. In this model, if F replicas are Byzan-
tine, then N ≥ 3F +1 replicas are required to agree on the same
requests. The algorithms proposed for the consensus problem
in partially synchronous network include DLS [22], Paxos [31],

Preprint submitted to Journal of Future Generation Computer System April 16, 2023

view stamped replication (VR) [36], Practical Byzantine Fault
Tolerant (PBFT) [15], Quorum/Update (QU) [1], Hybrid Quo-
rum (HQ) [18], Zyzzyva [29], FaB [34], Spinning [39], Aliph
[7], DBFT [19], ByzArchipelago [5] and Hotstuff [43]. Among
these protocols, some follow a leader-based model (e.g., PBFT,
Zyzzyva, and Hotsfuff) and some follow a leaderless model
(e.g., DBFT, ByzArchipelago). In this study we further nar-
row down the scope of the research to leader-based BFT con-
sensus algorithms in partially synchronous networks, as these
are more common. It is worth mentioning that Crain et al. [20]
have recently successfully applied DBFT to scale the Red Belly
blockchain, a comparison with this protocol will however be
addressed in our future work.

Most of the existing BFT leader-based consensus protocols
have scalability issues. We define scalability as the ability of a
given system to increase the number of replicas and still being
able to reach a consensus with a reasonable/acceptable perfor-
mance. Current protocols are restricted in terms of the number
of replicas needed to reach an agreement with an acceptable
performance (i.e., the use of an upper bound threshold x for
replicas in a network to reach an agreement). If the network
size (i.e., # replicas in a system) exceeds x, then the overall
performance declines significantly; and in some cases, the pro-
tocol might even break and fail to come to an agreement. This
research aims:

• To increase the threshold x (the maximum number of
replicas where the protocol can reach agreement).

• To increase the maximum throughput that the system can
offer at x replicas.

We start by examining existing consensus algorithms, iden-
tify their drawbacks, and then attempt to obviate the identi-
fied limitations. Studies [3, 29] showed that among the BFT
(leader-based) consensus algorithms for partially synchronous
networks, Zyzzyva [29] offers the highest throughput com-
pared to other protocols (e.g., PBFT [29, 3]), and this is why
we started our study with the Zyzzyva algorithm. As how-
ever reported in [2], further studies showed that Zyzzyva has
a safety issue (i.e., safety violation). In 2010, Aublin et al. in-
troduced an abstraction model (for BFT consensus algorithms)
to simplify the implementation of consensus algorithms. In
their paper, they proposed/developed AZyzzyva which mimics
the behaviour of Zyzzyva in the best-case situation (for which
Zyzzyva was optimized). AZyzzyva, unlike Zyzzyva does not
have the safety violation issue [2]. We thus focused our studies
on AZyzzyva, and it became our starting point for designing the
proposed protocol. Our studies on AZyzzyva showed that this
protocol has major limitations preventing it from being used
in real systems. Indeed, similar to other consensus algorithms,
AZyzzyva does not scale. Additionally, AZyzzyva relies on
a strong assumption, which is similar to Zyzzyva, i.e., honest
client. The protocol can break if the client is malicious.

We address here AZyzzyva’s bottleneck issue so to enable
the protocol to scale to large networks while offering a better
performance compared to the state-of-the-art Hotstuff protocol.

This newly designed scalable AZyzzyva, called SAZyzz, pro-
vides the following contributions:

• To enable SAZyzz to increase the threshold x (i.e., to in-
crease the number of replicas in the system), we applied
a tree-based communication model for the message com-
munication between the primary replica (the leader) and
the other replicas. This model has been added to the pro-
tocol by introducing two additional paths to AZyzzyva’s
original paths (AZyzzyva is explained in detail in §6).
Thus, SAZyzz comprises the following four paths: Fast
Path Simple Mode (FPSiM) (explained in §3.1), Fast
Path Scalable Mode (FPSCaM) (explained in §3.2),
Slow Path Simple Mode (SPSiM) (explained in §3.3),
and Slow Path Scalable Mode (SPSCaM) (explained in
§3.4).

• We relaxed the strong honest client assumption by adding
the client’s task to the primary replica as well. This has
been achieved by adding one extra task to the replicas,
i.e., sending their responses to both primary and client.
This enables the system to detect when the client is not
honest.

• The fixed primary model from AZyzzyva is also re-
moved, i.e., SAZyzz relies on changing the primary on
an epoch based manner (that is the primary is changing
in each epoch).

• We fully designed and implemented SAZyzz in Java (jdk-
14.0.1) with roughly 25K lines of code. Evaluation re-
sults are shown in §5.

• We applied SAZyzz in a blockchain context, i.e. in
ZyConChain [38] and designed and implemented this
blockchain system. Refer to §4 and §5.3 for details.

2. The Model

We consider a system consisting of a fixed set of N = 3F+1
replicas, where every replica is indexed by i ∈ [N] and [N] =
{1, ...,N}. Among these replicas, a set of f ⊂ [N], from 1 up to
|F|, are Byzantine. The replicas are connected in a peer-to-peer
model. We also assume here a partially synchronous network,
i.e., messages will eventually be received by the replicas with
an unknown delay τ. The proposed model does not have re-
striction on the client to be honest or malicious, i.e., the client
can be either honest or malicious. However, we assume that the
client cannot collude with the primary. Table 1 summarises the
notation used in this paper.

2.1. Tree Structure

We applied a tree-based communication model for structur-
ing the network (in two paths of the protocol, explained later)
to enhance performance/scalability. There have been debates
on applying tree-based communication to design BFT consen-
sus algorithms. The tree-based model imposes a limitation to

2

Notation Definition
τ Network delay
sk Private key
pk Public key
σ Signature
aσ Aggregated signatures
apk Aggregated public key
m Message
H() Hash function
H(Block) Hash of the block
N Total number of replicas
F Number of faulty replicas
FPSiM Fast Path Simple Mode
FPSCaM Fast Path Scalable Mode
SPSiM Slow Path Simple Mode
SPSCaM Slow Path Scalable Mode

Table 1: Notations

the protocol as it requires to consider an assumption: the inter-
nal nodes of the tree must not be Byzantine for the information
to propagate top-down. In other words, all the byzantine nodes
must be located in the leaf nodes. This can be viewed as a trade-
off between tolerating Byzantine faults and performance/scala-
bility.

The assumption about Byzantine failures considered in
BFT protocols is however unnecessarily strong for the cur-
rent technological settings. Indeed, with the current available
technological infrastructures (e.g., Trusted Execution Environ-
ment (TEE), public key infrastructure (PKI) with the certificate
mechanisms), the design of consensus protocols does not nec-
essarily need to consider/tolerate the f Byzantine nodes. Usu-
ally the faults in a current infrastructure are more likely to be a
crash fault. The recent works, namely FastBFT [33] and Cheap-
BFT [26], leveraged the current advances in the TEE technol-
ogy and redesigned the consensus algorithms to reduce com-
munication costs.

Thus, the following two assumptions are introduced for our
proposal:

• We assume all the internal nodes of the tree to be correct
nodes, i.e., not Byzantine. Hence, the messages, which
include consensus messages and blocks, are propagated
over the tree to the leaf nodes.

• During the gossip protocol, we assume that all the inter-
nal nodes are correct (i.e., not Byzantine) and transac-
tions are propagated to the leaf nodes.

As depicted in Figure 1, the tree is a binary tree in which the
root is the primary and other nodes of the tree are the replicas.
When a new leader is elected, the tree is constructed at each
replica by putting the primary replica as the root of the tree and
all the replicas create a similar tree. To propagate a message, the
primary sends the message down to its children, and then each
child node sends the same message down to its children and so
forth, until the message reaches the leaf nodes. Upon receiving
the message, the leaf nodes sign it and send their votes for the

message back to their parents in a bottom-up fashion. Once the
primary collects all the responses for the message, it creates the
final aggregated signature for the requested message.

Instead of sending a message to all the nodes, which has
a communication cost of O(N), the primary sends it to only
two nodes (its immediate children). Hence, the tree reduces
the communication costs to O(log N). This helps increase the
number of nodes in the network without adding bottlenecks on
the primary, because the primary sends the message only to two
nodes regardless of the total number of replicas in the network.
This also has a drawback as it increases the latency, but we
believe this drawback is negligible compared to the scalability
improvements the technique provides.

2.2. Cryptographic primitives
SAZyzz uses a multi-party signature scheme [12, 13],

namely BLS multi-signature [14, 13], which aggregates all the
digital signatures in a common message. It also aggregates the
public keys. For the signature verification, this scheme only
needs to verify a short multi-signature, which is faster than
verifying several signatures separately. Thus, each SAZyzz’s
replica is associated a pair of (ski, pki) key that is generated us-
ing the following BLS function KeyGen():

• αi
R
←− Zq (choose at random).

• hi ← gαi
1 ∈ G1.

• output pki = (hi) and ski = (αi).

To sign a message m received from the primary replica (i.e.,
the leader), replicas use the following BLS Sign(ski,m) func-
tion:

• output σi ← H0(m)αi
q ∈ G0.

The replicas then will send their signatures back to the primary
replica. Upon receiving the signatures from the replicas, the
primary replica aggregates all the signatures using the following
aggregation function:

• Aggregate((pk1, α1), ..., (pkn, αn)):

– compute (t1, t2, ..., tn)← H1(pk1, ..., pkn) ∈ Rn.

– output the multi-signature α← αt1
1 , ..., α

tn
n ∈ G0.

Then the primary replica sends the triple (α,m, apk), where
α is the aggregated signature, m is the message, and apk is the
aggregated public key computed as follows:

• compute (t1, t2, ..., tn)← H1(pk1, ..., pkn) ∈ Rn.

• compute the aggregated public key apk ← pkt1
1 , ..., pktn

n .

The replicas can then verify the aggregated signature using
the following BLS function:

• Veri f y(apk,m, α)

• if e(g1, α) = e(apk,H0(m)), output “accept”, otherwise
output “reject”.

3

Figure 1: Tree structure

3. Paths

SAZyzz introduces four paths, and each path has different
number of phases to reach an agreement. The first two phases
of all the paths are similar: SAZyzz (for all the paths) starts
by (phase 1) clients sending their requests to one (or more e.g.,
(f + 1)) replicas. Then, the second phase (phase 2) is triggered,
i.e., replicas who received the clients’ requests, broadcast them
(using gossip protocol [27]) to their neighbours such that the
entire network receive the requests. Note that the difference
between phase 1 of SAZyzz and AZyzzyva is that in AZyzzyva,
the client sends the request to the primary, however, in SAZyzz,
client can send its request to any replica. Then we added the
phase 2 to disseminate the request to other replicas including
the primary. We have added this phase to enable the protocol to
work in the epoch based model when it is needed, e.g., in the
blockchain context.

3.1. FPSiM Path

Details
Referring to Figure 2, in phase 3, the primary creates a proposal
(i.e., a block) and broadcasts (through reliable broadcast [16])
it to all the replicas in the network. Replicas, upon receiving
the block, which includes the client request, need to execute
the client’s request and verify (and vote for) the block, phase
4. If the proposal is verified then replicas “accept” the block
by signing the proposal message, which contains H(block) (i.e.,
the hash of the block) and message m, i.e., the string ”BLOCK-
PROPOSAL”. For the signing, replicas use the S ign() function
explained in §2.2. The replicas, then, (I) send their responses
(i.e., the response from the execution of the client’s request)
directly to the client, and (II) send their signatures to the pri-
mary. If the client receives (3 f + 1) similar responses from
replicas, then the request can be committed. Meanwhile, the
primary collects all the votes from the replicas. If (3 f + 1) sig-
natures (including the primary’s signature) are collected, then

the proposal (block) is accepted and committed. The primary
then aggregates the collected signatures, using the Aggregate()
function explained in §2.2. Then, it creates the COMMIT mes-
sage, which includes 1) the H(block), i.e., the hash of newly ac-
cepted block, 2) message m, i.e., the string “COMMIT ′′, and 3)
aσ, i.e., the aggregated signatures, and sends it to all the repli-
cas, this is phase 5. At this stage, the agreement is reached and
one round of the consensus is terminated. The extra task, i.e.,
the replicas sending their votes back to the primary, is added to
detect the malicious client. Let us now explain how it detects
it: consider that the replicas send their responses back to the
client and their votes back to the primary. The malicious client,
despite receiving (3 f + 1) same responses from the replicas,
sends a “PANIC′′ message to the replicas. If the primary sends
the “COMMIT ′′ message to the replicas, then the honest repli-
cas can detect the mismatch between the two messages received
from the primary and the client. Thus, the honest replicas detect
the malicious behaviour and inform the network.

Communication Complexity
The communication complexity of this path is computed by the
summation of the communication cost of each phase, which is
O(1) in phase 1 and O(n) in all the remaining phases, namely,
phases 2, 3, 4, and 5. Thus, the total communication complexity
is computed as follows, O(1) + O(n) + O(n) + O(n) + O(n) =
O(1) + 4 × O(n) ≃ O(n).

Contribution
FPSiM removes the strong assumption of AZyzzyva’s honest
client by modifying the decision maker for COMMIT phase of
fast path of AZyzzyva. In AZyzzyva, the client, upon receiving
(3 f + 1) same results from replicas, decides on commit, which
requires the strong assumption of client being honest. However,
this decision in FPSiM is finalized by both the client and the
primary, thus it relaxes the assumption.

4

Figure 2: FPSiM (Fast Path Simple Mode) Phases

Result
FPSiM scales better and provides significantly higher through-
put in comparison to the recently proposed leader-based con-
sensus protocol, namely Hotstuff [43], with the same settings
and assumptions. The experimental results provided in §5
demonstrate this improvement. Furthermore, the protocol does
not rely on honest clients, which makes the protocol secure
against malicious client attacks (i.e., when the client sends dif-
ferent decisions to different replicas).

3.2. FPSCaM Path

Details
Improving scalability has been our main concern/goal in devis-
ing SAZyzz. Thus, after relaxing the honest client assumption,
we then switched our attention to further enhancing the scala-
bility and performance of the protocol. We applied a tree based
communication model for the communications between the pri-
mary and other replicas. This reduces the amount of messages
that the primary needs to send (through the limited bandwidth)
to the replicas, as instead of passing the messages to all the
replicas, the primary only sends them to its children. Then each
child node sends the messages to their immediate children until
the messages reach the leaf nodes. Then the leaf nodes vote for
the messages and send their signatures back up on the tree to
their parents.

As depicted in Figure 3, after phase 2 the primary creates
a new proposal (i.e., block) and sends it to the network based
on the tree communication model (i.e., sends the proposal to
its children, and then the children send it down to the tree un-
til it reaches the leaf nodes): this is phase 3. Phase 4 is then

triggered, that is the leaf nodes (I) execute the client’s request,
and (II) sign the proposal using the S ign() function of §2.2, if
verified. They, then, send their responses to the client and their
signatures back up on the tree to their parents. The parent node
then aggregates the signatures received from its children with
its own signature using the Aggregate() function explained in
§ 2.2, and sends it back up on the tree until it reaches the pri-
mary. Upon receiving 3 f votes from its children, the primary
aggregates them with its own signature and then triggers the
commit phase (phase 5). During this phase, the primary uses the
same tree-based communication to send the COMMIT message
to the replicas. If a client receives (3 f + 1) similar responses
from the replicas, and the replicas receive the ”COMMIT”
message from the primary, the request can be committed. At
this stage the agreement on the proposal is reached and the one
round of the consensus is terminated.

Communication Complexity
The tree-based communication reduces the communication
complexity of phases 3, 4, and 5 of the FPSiM path. Simi-
lar to FPSiM, the total complexity (including all the phases) is
computed by the sum of the communication costs of all phases,
i.e., O(1) in phase 1, O(n) in phase 2 and O(log(n)) in all the
remaining phases, namely, phase 3, 4, and 5. Thus, the to-
tal communication complexity is as follows: O(1) + O(n) +
O(log(n))+O(log(n))+O(log(n)) = O(1)+O(n)+3·O(log(n)) ≃
O(n) + O(log(n)). When removing the cost of phases 1 and 2
from both paths, one can see the improvements of the cost in
the phases 3, 4, and 5. This cost is O(n) for FPSiM; however,
this is reduced to O(log(n)) in FPSCaM path.

5

Figure 3: FPSCaM (Fast Path-Scalable Mode) Phases

Contribution
The main contribution of this path is the tree-based commu-
nication that is added to the FPSiM. Thus, compared to the
AZyzzyva consensus protocol, this path has a main contribu-
tion, i.e., the tree-based communication.

Result
This enables the system to increase the number of the nodes in
the network without degrading the performance of the system
when comparing to existing solutions.

3.3. SPSiM Path

Details
Referring again to FPSiM and FPSCaM, if one (or more) of the
replicas is faulty, the protocol cannot reach an agreement, i.e.
the consensus does not terminate. To address this problem, sim-
ilar to AZyzzyva, SAZyzz relies on a backup path, i.e., the slow
path mode. This path is triggered if the client or the primary
does not receive enough similar responses and enough signa-
tures from the replicas within a period T (i.e., when the client
sends a request it sets a timer that expires after a period T), re-
spectively. Let us assume that in phase 4 of the FPSiM path the
primary either receives less than 3 f signatures (within T , i.e.,
(2 f + 1) < # Signatures < 3 f), or the client receives less than
(3 f + 1) similar responses from the replicas within the period
T . Thus, the client and the primary send a “PANIC′′ message
to the replicas (phase 5), and the primary also aggregates the
received signatures and sends it along with the “PANIC′′ mes-
sage. Upon receiving this message, the replicas stop executing
requests and send their history along with their signatures to the
primary and client. The replicas will then send “ABORT ′′ mes-
sage for the subsequent messages. This is when the system falls
back to the backup path.

AZyzzyva applies the PBFT [15] protocol as it is backup
solution. Following this, we also apply PBFT. However, any
other BFT consensus algorithm can be replaced for the backup

model. Once the consensus is reached based on the PBFT pro-
tocol, the response is sent back to the client. Here, the agree-
ment is reached and one round of the consensus is terminated.

Communication Complexity
For computing the communication cost of this path we first
compute the cost from phase 1 to phase 6, i.e., before enter-
ing the backup solution. We will not add the communica-
tion cost of the backup algorithm here, only because this can
vary depending on the choice of the backup algorithm. Thus,
the complexity cost is computed in the same way as FPSiM,
namely by the summation of the communication costs of each
phase, which is here O(1) for phase 1 and O(n) for phases 2,
3, 4, 5, and 6. Thus, the total communication complexity is
O(1)+O(n)+O(n)+O(n)+O(n)+O(n)+O(n) = O(1)+5·×O(n) ≃
O(n). If we assume the cost of the backup algorithm is X, with
X not necessarily linear, then the final cost is ≃ O(n) + X.

Contribution
Compared to AZyzzyva, the main contribution of this path
is the removal of honest client assumption from deciding
on switching to the fall-back path of AZyzzyva. When the
AZyzzyva’s client does not receive enough, (3 f + 1), same re-
sponses from the replicas, it sends the PANIC message to all
replicas, including the primary. Here, the replicas need to re-
ceive the same PANIC message from the primary to accept the
switching.

Result
Since the primary replica has become part of the decision mak-
ing task, the system can detect the fault and misbehaviour easily
compared to when the client is responsible to decide.

3.4. SPSCaM Path
Details
This path is the scalable version of the SPSiM path. SPScaM
uses the tree-based communication model (applied in FPSCaM)

6

Figure 4: SPSiM (Slow Path-Simple Mode) Phases

to make the fall back path (SPSiM) scalable. Thus, if the pri-
mary does not receive the required signatures (i.e., (3 f + 1)) in
the fast paths, then it can fall into this path instead of the SPSiM
path.

The path is depicted in Figure 5. This path is similar to
the SPSiM path with one difference, i.e., all the communication
between the primary and the replicas are over the tree. Addi-
tionally, we applied the tree communication in our backup al-
gorithm, i.e., PBFT. Hence, in phase 3, the primary sends the
proposal to the replicas based on the tree communication, ex-
plained before. Consequently, the replicas reply back to the pri-
mary in a bottom-up fashion over the tree. Similarly, in phase
5 the primary sends the PANIC message over the tree and the
replicas reply back to the primary by sending their responses to
their parents. Additionally, when the protocol enters the backup
path, all the communication between the primary and the repli-
cas are over the tree.

Communication Complexity
Similar to SPSiM, we compute the complexity for the path be-
fore entering the backup consensus. Thus, the communication
cost is computed in the same way as the FPSCaM path (the
summation of each phase). The total communication cost is
equal to O(1) + O(n) + O(log(n)) + O(log(n)) + O(log(n))) =
O(1) + O(n) + 3 · O(log(n)) ≃ O(n) + O(log(n)). If the cost of
phases 1 and 2 are discarded, the communication cost would
then become O(log(n)). If we assume the cost of the backup
algorithm is X, where X is not necessarily linear, then the fi-
nal cost is ≃ O(log(n)) + X, which indicates an improvement
compared to SPSiM, where the cost is O(n) + X.

Contribution
The main contribution of this path is the tree-communication
model added to SPSiM.

Result
The tree-based communication enables the system to scale to a
large number of nodes without compromising its performance.

Furthermore, the protocol does not rely on the honest client,
which makes the protocol secure against the malicious client
attack (i.e., when the client sends different decisions to different
replicas to break the system).

To summarise this section, we have introduced four paths
in SAZyzz. Two paths are fast-path mode (i.e., FPSiM and FP-
SCaM) and the other two paths are the fall back mode (i.e.,
SPSiM and SPSCaM). FPSCam and SPSCaM are the scalable
versions of FPSiM and SPSiM, respectively. When applying
SAZyzz, only one path of each mode needs to be used. That is,
depending on the application requirements (e.g., if scalability is
needed), then the scalable version of each mode will need to be
applied (i.e., FPSCaM for the fast mode and SPSCaM for the
fall back mode).

4. Blockchain Adopting SAZyzz

After devising SAZyzz and evaluating its performance (see
§ 5), we have used it to design a new blockchain system called
ZyConChain [38] (see Figure 6). ZyConChain proposes a scal-
able blockchain protocol for general applications (i.e., not re-
stricted to Cryptocurrencies). To improve the two major factors
affecting transaction scalability, namely throughput and latency,
we targeted/modified both the blockchain structure component
as well as the consensus component. For the consensus proto-
col, we used the SAZyzz algorithm. For the structure compo-
nent, we modified the one block one chain structure. We in-
troduced three types of blocks, namely parentBlock, sideBlock,
and stateBlock. These blocks form three separate chains: main
chain, sideBlock chain and state block chain, respectively.

Briefly, ZyConChain uses the sharding technique; and thus
it divides the network into small groups, committee, and intro-
duces the three types of chains, mentioned above. Within each
committee nodes process transactions and generate sideBlocks
based on the SAZyzz consensus algorithm. The primary of the
committee collects transactions from the transaction pool and
includes them into a sideBlock. It then triggers the SAZyzz
consensus algorithm to reach an agreement amongst the com-

7

Figure 5: SPScaM (Slow Path-Scalable Mode) Phases

Figure 6: ZyConChain Overview

mittee group for the proposed sideBlock. If the committee
agrees on the sideBlock, this will be attached into the sideBlock
pool.

ParentBlocks and stateBlocks are also generated within
each committee, separately. The leader (primary) generates the
parentBlock and stateBlock. To generate the parentBlock, the
leader first collects several confirmed sideBlocks from the side-
Block pool and includes them into a parentBlock. Then, it com-
putes the hash for the parentBlock and requests the commit-
tee group to reach an agreement for the proposed parentBlock.
Once the committee agrees on the parentBlock, this is included
into the main chain. Then, the sideBlocks are added and at-
tached to the parentBlock into the sideBlock chain. Finally, the
leader creates the stateBlock, which contains the information

about the latest update of the main chain and sideBlock chain.
As ZyConChain used the sharding technique, it was re-

quired to address the cross-shard transactions limitations as-
sociated with this protocol. To address this issue, ZyCon-
Chain generates verifiable objects that contain information
about cross-shard transactions. The verifiable objects are in-
cluded into the stateBlock and sent to other committees. Once
other shards receive the stateBlock, they will be able to ver-
ify the cross-shard transactions confirmation and finalize them.
Please refer to [38] for more details about the original work on
ZyConChain.

8

5. Evaluation

We fully implemented SAZyzz as a library in Java (jdk-
14.0.1) with roughly 25K lines of code. It contains 11 pack-
ages and 146 classes. We carefully followed the well-known
software engineering principles during the full implementation
of SAZyzz. Specifically, we carefully designed the architecture
of the packages to ensure the final product (i.e., the SAZyzz
consensus library) has both maintainability and reusability fea-
tures. Hence, most of the SAZyzz’s packages are reusable, and
accessible through the library’s github.

This section first provides the performance (throughput)
and scalability evaluation of SAZyzz and compares it with the
state-of-the-art Hotstuff [43]. The experimental results con-
ducted on the SAZyzz based blockchain (i.e., ZyConChain) are
then presented.

5.1. Setup

The experiments were conducted on the Victorian Cloud in-
frastructure (i.e., Nectar) using m3.medium instances. Each in-
stance had 4 vCPUs, 8GB RAM, and 30GB storage, with all
running Ubuntu 20.4 & 19.10 OS. All instances were located in
the same zone, melbourne-qh2. We ran each replica on a sin-
gle VM instance, similarly to Hotstuff. We did not modify the
bandwidth of the network. The network latency between two
machines was ≃ 1 ms.

The implementation of SAZyzz uses secp256k1 for all dig-
ital signatures. For the hash function, we used sha256 for hash-
ing all the messages. There exist two implementations for BLS,
namely, Blst and mikilu. We added both in our implementa-
tion. However, Blst is used for the experiments. All results for
SAZyzz reflect end-to-end measurement from primary.

For the Hotstuff, we used the provided library on github 1

and setup the clients, replicas and servers on different VM ma-
chines for the experiments. The results reflect the end-to-end
measurement from clients.

Metrics
We measured the throughput and scalability with two metrics,
Block Size and Network Size, i.e., the number of the total repli-
cas in the network. For the former, we conducted the experi-
ments for sizes in the set {38, 70, 89, 100, 165, 200, 300, 400}
(in KB). And for the latter, we varied the size to have the net-
work with size from the set {4, 7, 10, 13, 16, 19, 25, 34, 40, 46}.

Dataset
To test the protocol in a real world setting, we used Ethereum
transactions to perform one set of the experiments. We ex-
tracted the Ethereum dataset from BigQuery API from google
cloud platform (“https://console.cloud.google.com/bigquery?
project=tidal-memento-290909&page=jobs”) which is avail-
able publicly. We used the following SQL query to download
the dataset.

1https://github.com/hot-stuff/libhotstuff

SELECT f rom−address, to−address, value,
block−number, block−hash

FROM “bigquery − public − data.ethereum−blockchain.
transactions” AS transactions

WHERE DATE (block−timestamp) BETWEEN
“2018−09−28” AND ”2020−09−28” LIMIT 1000

5.2. Performance

SAZyzz Results
We first measured throughput in a setting commonly seen in the
evaluation of other BFT replication systems. We ran 4 replicas
in a configuration that tolerates a single failure, i.e., f = 1,
while varied the block size. This benchmark used empty (zero-
size) transactions (client requests) with no view-change trig-
gered. We then varied the network size with the configuration
accordance with that size, e.g., for the network size 7 replicas
the configuration tolerates 2 failures. Similarly, we increased
the network size up to 46 replicas, where the system tolerates
15 failures.

Figure 7 depicts the results of 4 block sizes, 100, 200, 300,
and 400, for 5 different network size, 4, 7, 10, 25, and 46 repli-
cas. When the block size is set to 100, the highest throughput
of SAZyzz is around 35K transactions per second, where the
network size is 4. When the block size is enlarged, the through-
put of the system increases progressively. With the block size
400 KB, the system performs at its highest capacity, where it
processes approximately 140K transactions per second for the
network size 4. This number is around 40K transactions per
second for the network with 46 replicas.

Figure 7: SAZyzz Performance Results

Hotstuff Results
We measured the throughput of Hotstuff for the same configu-
ration. That is, we varied the network size (4, 7, 10, 25, and 46

9

https://github.com/hot-stuff/libhotstuff

replicas) and block size (100 and 400 KB) and ran the exper-
iments for the empty (zero-size) transactions. Figure 8 shows
the results for Hotstuff: it also illustrates the comparison be-
tween the two systems, SAZyzz and Hotstuff. When the net-
work size is 4 Hotstuff performs better than SAZyzz, where
for block size 100 KB Hotstuff processes around 140K transac-
tions per second while SAZyzz processes 35K transactions. For
the block size 400 KB, Hotstuff throughput is roughly 160K,
but for SAZyzz, this number is approximately 140K transac-
tions per second. When the number of replicas in the network
increases, we can see that SAZyzz performs better than Hot-
stuff. For instance, when the network comprises of 7 replicas,
Hotstuff can process around 65K transactions per second (for
block size 400 KB), whereas SAZyzz processes close to 120K
for the same block size. Similarly, for the network size 25,
Hotstuff throughput is nearly 20K transactions per second but
SAZyzz’s throughput is over 45K transactions. When the num-
ber of replicas is increased to more than 25, Hotstuff failed to
process any transaction. This was surprising, as it differs from
the results reported by the original work on Hotstuff [43]. We
believe this might be due to the infrastructure used for the ex-
periments. Specifically, Hotstuff conducted the experiments on
the Amazon EC2 c5.4xlarge instances which had more compu-
tational resources available (i.e., each instance had 16 vCPUs
supported by Intel Xeon Platinum 8000 processors). However,
our computational resources were somehow limited, and details
provided in Section § 5.1.

Figure 8: HotStuff & SAZyzz Comparison Results

5.3. Performance Results of ZyConChain

We fully designed and implemented ZyConChain [38]
based on SAZyzz consensus library. To evaluate its perfor-
mance, we conducted several experiments in different configu-
rations. For the baseline, we used Ethereum transactions and set
the block size to 38 KB while varying the network size. Second,
we increased the block size to 70, 89, and 165 KB and carried

out the experiments with the same transactions while changing
the network size. For each experiment, we ran the test 5 times
to show the standard deviations as error bars. Note that, the
results include transaction verification and the BLS multiparty
signature verification that are computationally expensive. We
would also like to mention that Ethereum transactions are not
executed in ZyConChain. We only send them to network to
have transactions with a different payload size.

As shown in Figure 10, when the block size increases, Zy-
ConChain performance improves. For block size 38 KB, Zy-
ConChain can process around 1500 transactions per second.
When the block size is increased to 165 KB, the throughput is
increased to 4k transactions per second. When the network size
is increased, we can still see a performance improvement when
the block size increases, as depicted in Figure 10. These results
indicate that the ZyConChain’s performance scales better com-
pared to the state-of-the-art blockchain systems, as depicted in
Figure 11. ZyConChain outperformed Rapidchain (when block
size is 32 MB), ByzCoin, Omniledger (when its block size is 1
MB), Elastico, Ethereum, and Bitcoin. It is worth mentioning
that unlike ZyConChain, these blockchain systems assume a
synchronized network while we do not. When comparing how-
ever with Omniledger (in the 16 MB block size), ZyConChain
processes less transactions per second. Note that the numbers
used in Figure 11 are the reported numbers. It is indeed truly
challenging to re-implement all the benchmarked protocols, and
we therefore only used the data reported in the corresponding
papers. We used however the same experimental setting applied
in these protocols to provide a possible/plausible comparison
between some of these blockchain systems.

5.4. Scalability

To evaluate the scalability of SAZyzz in various dimen-
sions, we carried out three sets of experiments. For the base-
line, we used empty transactions with block size set to 100 KB
while varying the number of replicas. Second, we increased
block size to 200, 300, and 400 for the empty transactions while
changing the number of replicas. Third, we applied SAZyzz in
a blockchain context, i.e., ZyConChain, and used real world
transactions (see §5.1) for the experiments. In this experiment,
we varied the block size and the number of replicas. We re-
peated each run 5 times for each setting to indicate the standard
deviations and to show the error bars.

The first experiments, which are depicted in Figure 7, indi-
cate that the throughput (the number of transaction per second)
of SAZyzz improves when the block size increases even when
the network size is scaled out, i.e., the number of replicas in-
creases. Additionally, as shown in Figure 8, we observed that
SAZyzz’s performance scales better compared to Hotstuff. For
the block size 400 KB and the network size 10 replicas, Hotstuff
processed 50K, whereas SAZyzz processed close to 60K trans-
actions per second. When the number of replicas was increased
to 25, the performance of Hotstuff deteriorated noticeably com-
pared to SAZyzz. Hotstuff processed less than 20K transactions
per second, while SAZyzz processed around 50K transactions
per second.

10

Figure 9: ZyConChain performance in different network size

Figure 10: Performance of ZyConChain with different block size

6. Related Work

There has been over four decades of contributions to the
solving the consensus problem. This section studies only
four solutions, specifically four BFT consensus protocols, each
being a representative of one decade. We first discuss the
DLS [22] protocol proposed in 1988, and then describe the
PBFT [15] protocol proposed in 1999. Later, we provide de-
tails of the Zyzzyva [29] protocol, which was proposed in 2007.
Since Zyzzyva presents a safety violation, we finally studied the
AZyzzyva [7] protocol. Finally, we describe the most recent

consensus algorithm, namely Hotstuff [43], proposed in 2019.
We will show how these protocols operate as well as their limi-
tations.

DLS

In 1988, Dwork, Lynch, and Stockmeyer[22], initiated the the-
oretical foundation of partially synchronous consensus algo-
rithms. They divided the consensus problem into safety and
liveness (also known as termination) problems. They, then, for-
mally demonstrated that the consensus problem was solvable
in four models, i.e., Crash Fault Tolerance (CFT), omission-

11

Figure 11: Benchmarking Blockchain Systems

tolerance, Byzantine Fault Tolerance (BFT), unauthenticated
BFT, within the ∆ synchronous setting.

To achieve agreement in this setting, DLS relies on a broad-
cast primitive in a round based model. That is an arbitrary
replica p (i.e., the proposer) starts the broadcast primitive,
which consists of two initial rounds followed by subsequent it-
erative rounds. The rounds are organized into alternating “try-
ing” and “lock-release” phases. For the BFT setting the DLS
rounds work as follows:

• Each round begins with each of the replicas sending the
value v (i.e., the value that they believe is correct) to the
p (the round’s proposer).

• p “proposes” a value v if at least N−F replicas have sent
that value to p. (if there is more than one possible value
that p can propose, then it will choose one arbitrarily.)

• Once a replica receives the proposed value from p, it
locks on the value v and sends an acknowledgment to the
p.

• If p receives messages from 2F + 1 replicas that they
locked on the value v, p commits that as the final value.

DLS requires the network of N = 3F + 1 replicas, where F
is the number of Byzantine faults in the network.

Message complexity (i.e., the message transmission in each
single round) in DLS is O(N4). We have achieved a better com-
plexity.

PBFT

The Practical Byzantine Fault Tolerance (PBFT) protocol, pro-
posed by Castro et al. [15], is one of the algorithms that reaches

consensus in the presence of Byzantine participants in a par-
tially synchronous network. It requires (3F + 1) replicas in the
system to be able to tolerate up to F byzantine nodes. Since it is
designed for partially synchronous network, the nodes are coor-
dinated in rounds. Each round comprises three phases, namely,
pre-prepare, prepare, and commit [15].

• Pre-prepare: during this phase, the primary replica (the
current leader) triggers the next round (in which the repli-
cas must agree upon a value m) by sending a “pre-
prepare” message to other replicas. When replicas re-
ceive the “pre-prepare” message, they check the validity
of m. If m is valid and correct, then they proceed to the
next phase, i.e. prepare.

• Prepare: every node sends a “prepare” message to other
nodes. A node that has received a quorum of (2F + 1)
“prepare” message for the value m, proceeds to the next
phase, called the commit phase.

• Commit: when a node is in this phase, it sends a “com-
mit” message to other nodes. Once, nodes received a
quorum of (2F + 1) “commit” message for the value m,
they are assured that they are in a safe state as enough
members have acknowledged and recorded the decision
for m. Thus, they update their state by adding m.

These phases are the normal operations of the PBFT proto-
col when the primary is correct and reliable. However, if the
primary is suspected to be faulty, then the protocol reverts to
a sub-protocol, called a View-Change. When a node notices a
non-responsive or malicious behaviour of the primary (of the
current view), it initiates a view-change and stops performing
the current view’s operations. If (2F + 1) nodes triggered the
view-change phase, then the next primary takes over.

Although PBFT has correctly addressed the consensus
problem in the presence of Byzantine nodes, it has two ma-
jor drawbacks. (1) PBFT’s performance was not designed to
scale to wide area networks: when the number of replicas in the
network increases, the performance of the system degrades. (2)
By design, PBFT follows leader-based pattern with an all-to-all
communication model, needing a communication complexity
of O(n4) to commit a constant number of transactions as ex-
plained elsewhere [20]. This causes significant delays in the
network when a large number of nodes is used.

PBFT has led to several other leader-based protocols,
namely BFT-SMaRT and Zyzzyva [11, 29]. It has been adopted
in some of the existing blockchain protocols as well, such as
Hyperledger Fabric [4], and [30] is a variant of it. All these
protocols inherit some of the limitations of the PBFT protocol.

Zyzzyva

In 2007, Zyzzyva Kotla et al. [29] was proposed as a fast BFT
consensus protocol based on state machine replication. They
applied a speculative approach in updating the states, resulting
in a high throughput protocol [2, 3]. In this protocol, when
the primary (the current leader) receives the clients’ requests,
it sends them to other replicas. Replicas directly respond to

12

the requests without first reaching an agreement that requires
running the expensive three-phase commit protocol.

Zyzzyva comprises two paths [29, 2, 3]. One is a two-phase
path that resembles the PBFT protocol. The other one is the fast
path which bypasses the commit phase of the PBFT protocol.
In the fast path, the state is updated once the client receives
(3F + 1) prepare messages. However, if there are not enough
(3F + 1) commit messages, then the protocol falls back into the
two-phase path to guarantee the progress. We explain them in
more details below.

• Fast path: this path does not have a commit message
phase. When a client receives (3F + 1) prepare messages
from the replicas, it commits the message. This is an opti-
mistic approach that can fail. To guarantee the progress,
Zyzzyva proposes a second path, called the two-phase
path, which resembles to the PBFT’s one.

• Two-phase path: If the client receives between (2F + 1)
and 3F prepare messages, then it needs to collect (2F+1)
commit messages. Thus, the client creates a commit-
certificate message and sends it to the replicas. The repli-
cas reply to the client by sending the commit message. If
the client receives (2F + 1) commit messages, then the
request is complete and the client commits the message.

The performance analysis in [3, 29] shows that Zyzzyva
has significantly improved performance compared to the pre-
vious BFT protocols, such as PBFT [15] and QU [1]. Addition-
ally, Zyzzyva’s latency was shown the lowest and its throughput
overhead is remarkably low.

Although Zyzzyva has provided substantial performance
improvements, it has some major drawbacks that hinder the
usage/deployment of this protocol. Indeed, Zyzzyva used the
strong honest client assumption. Another downside of Zyzzyva,
similar to other BFT consensus algorithms, is its inability to
scale when the number of replicas increases. Finally, Zyzzyva
has a view-change sub-protocol which will is initiated if the
primary is slow or faulty. This protocol is very complex and
difficult to implement.

AZyzzyva

In 2010, the authors of [7] proposed AZyzzyva. The main goal
of AZyzzyva was to decouple the handling of the “fast-path”
and the “slow path” of Zyzzyva, as it was shown that the tran-
sition between the two paths in Zyzzyva is extremely complex
to implement. The authors introduced two Abstract implemen-
tations namely, ZLight and Backup to address the issue. ZLight
is the Abstract that guarantees the progress of the fast-path of
Zyzzyva. The Backup is the Abstract that guarantees the safety
of the protocol.

ZLight Abstract commits requests when (I) there are no link
failures, and (II) no client is Byzantine (this is what we re-
ferred to as the honest client assumption, i.e., one of the issues
of AZyzzyva). In these settings, ZLight implements Zyzzyva’s
“fast-path” model. However, when the client does not receive
(3F + 1) similar responses from replicas, it sends a “PANIC”

message to replicas (unlike Zyzzyva whose client sends the
“commit-certificate” message). Upon receiving the “PANIC”
message, replicas stop executing requests and send back to
the client a signed message that includes their history. When
the client receives back (2F + 1) messages which contain the
replica’s histories, it generates an “abort history” message and
switches to the Backup Abstract.

The Backup Abstract is built as a wrapper around any BFT
algorithm. It works as follows, it ignores all the requests sent by
the underlying BFT protocol until it receives a request that con-
tains a valid init history, i.e., the abort history that is generated
by the client in the previous Zlight path, explained above. When
it receives the correct init history, it executes all the requests in
the init history and sets its current state. Then it starts executing
k number of ordered requests received from the BFT protocol.
After committing the kth request, Backup aborts all the subse-
quent requests and returns a signed message containing the se-
quence of executed requests, as the abort history. Committing
only the k ordered requests is to guarantee the liveness of the
protocol.

As mentioned before, AZyzzyva, similar to Zyzzyva, relies
on the honest client assumption. Thus, if the client is mali-
cious, the protocol is compromised. Additionally, AZyzzyva
is limited to a small number of replicas, hence, if the network
grows, i.e., the number of replicas increases, the protocol is not
able to maintain its performance and even in some cases (when
the number of replicas is bigger than a threshold x) the protocol
fails to progress.

Hotstuff

Hotstuff Yin et al. [43], proposed in 2019, is one of the most re-
cent leader-based BFT consensus algorithms designed for par-
tially synchronous networks. It outperforms BFT-SMaRT with
a linear communication complexity, their leader election mech-
anism relies on a round-based model.

The protocol reaches consensus in four phases, namely pre-
pare, pre-commit, commit and decide phase. It starts by collect-
ing new-view messages from replicas for a new leader. When
the leader has collected requests from enough replicas, i.e.,
(N − F), it starts a new view and creates a new proposal based
on the received views, and then sends the prepare message (pre-
pare phase) to other replicas. After receiving the prepare mes-
sage from the leader, other replicas first verify the message. If it
is verified, then replicas send the prepare vote back to the leader.
Upon receiving (N−F) votes from the replicas for the proposal,
the leader triggers the pre-commit phase. During this phase, the
leader combines the votes (received from replicas) into a pre-
pare quorum certificate and then broadcasts it in a pre-commit
messages to all replicas. Upon receiving the pre-commit mes-
sage, the replicas send their votes back to the leader. When
the leader receives pre-commit votes, it combines them into a
precommitQC and broadcasts it in commit message (commit
phase) to all replicas. The replicas that receive the commit mes-
sage lock their current state and send their vote on the commit
message back to the leader. Upon receiving the votes for the
commit message, it sends the decide message (decide phase) to

13

all replicas. After receiving the decide message, the replicas
update the state they have locked in the commit phase.

7. Conclusion

This paper described SAZyzz, a scalable Byzantine consen-
sus protocol for partially synchronous networks. SAZyzz is a
leader-based protocol, where the leader changes in an epoch
based model. It is built on top of AZyzzva and addressed its
limitations, namely scalability and the strong honest client as-
sumption. We adopted a tree-based communication model in
SAZyzz to enable the protocol to scale when the number of
replicas increases. The protocol proposed four paths for reach-
ing consensus, namely FPS iM §3.1, FPS CaM §3.2, S PS iM
§3.3, and S PS CaM § 3.4. SAZyzz has removed the honest
client assumption from AZyzzyva by giving the client’s task to
the primary replica as well. The evaluation results showed that
SAZyzz’s performance scales better compared to the state-of-
the-art, Hotstuff protocol.

To conclude the paper, we show the results in Table 2 re-
lating to the complexity analysis of different SAZyzz’s paths.
The fast path with the adopted tree model, i.e., FPS CaM, has
improved the communication costs to O(log(n)). The fast path
without the tree communication, i.e., FPS iM, has linear cost.
For the backup paths, we can see where we have adopted the
tree communication, i.e., S PS CaM path, we have a O(log(n))
cost plus the cost of the backup algorithm, shown as X. For
the path without the tree, i.e., S PS iM, we have a linear com-
munication cost plus the cost of the backup algorithm, thus the
communication complexity is O(log(n))+X. When this is com-
pared with Hotstuff, where the communication cost is linear, we
can see that SAZyzz with the FPS CaM path outperforms the
Hotstuff.

Path Communication Cost
FPS iM O(n)

FPS CaM O(log(n))
S PS iM O(n) + X

S PS CaM O(log(n)) + X

Table 2: Communication Complexity

Acknowledgment

The first and fourth authors of this paper would like to
thank the Australian Research Council (ARC) for the sup-
port of this work under the DP (Discovery Project) scheme
(DP200100005). The scholarship of the first author is provided
by this grant.

References

[1] Michael Abd-El-Malek, Gregory R Ganger, Garth R Goodson, Michael K
Reiter, and Jay J Wylie. 2005. Fault-scalable Byzantine fault-tolerant
services. ACM SIGOPS Operating Systems Review 39, 5 (2005), 59–74.

[2] Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo Alvisi, Rama Kotla,
and Jean-Philippe Martin. 2017. Revisiting Fast Practical Byzantine Fault
Tolerance. arXiv:1712.01367 [cs.DC] i (2017), 1–13. arXiv:1712.01367
http://arxiv.org/abs/1712.01367

[3] Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. 2009.
Zyzzyva : Speculative Byzantine Fault Tolerance. 27, 4 (2009). https:

//doi.org/10.1145/1658357.1658358

[4] Elli Androulaki, Yacov Manevich, Srinivasan Muralidharan, Chet
Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessan-
dro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić, Artem Barger,
Sharon Weed Cocco, Jason Yellick, Vita Bortnikov, Christian Cachin,
Konstantinos Christidis, Angelo De Caro, David Enyeart, Christopher
Ferris, and Gennady Laventman. 2018. Hyperledger Fabric: A Dis-
tributed Operating System for Permissioned Blockchains Elli. EuroSys
(2018), 1–15. https://doi.org/10.1145/3190508.3190538

[5] Karolos Antoniadis, Antoine Desjardins, Vincent Gramoli, Rachid Guer-
raoui, and Igor Zablotchi. 2021. Leaderless Consensus. In Proceedings of
the 41st IEEE International Conference on Distributed Computing Sys-
tems (ICDCS’21).

[6] Hagit Attiya and Jennifer Welch. 2004. Distributed computing: funda-
mentals, simulations, and advanced topics. Vol. 19. John Wiley & Sons.

[7] Pierre Louis Aublin, Rachid Guerraoui, Nikola Knězević, Vivien Quéma,
and Marko Vukolić. 2015. The next 700 BFT protocols. ACM Transac-
tions on Computer Systems 32, 4 (2015), 363–376. https://doi.org/

10.1145/2658994

[8] Shehar Bano, Mustafa Al-Bassam, and George Danezis. 2017. The road
to scalable blockchain designs. USENIX; login: magazine (2017).

[9] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi,
Patrick McCorry, Sarah Meiklejohn, and George Danezis. 2019. SoK:
Consensus in the Age of Blockchains. In Proceedings of the 1st ACM
Conference on Advances in Financial Technologies (AFT ’19). 183–198.

[10] Simon Barber, Xavier Boyen, Elaine Shi, and Ersin Uzun. 2012. Bitter
to better—how to make bitcoin a better currency. In International confer-
ence on financial cryptography and data security. Springer, 399–414.

[11] Alysson Bessani, Joao Sousa, and Eduardo EP Alchieri. 2014. State ma-
chine replication for the masses with BFT-SMART. In 2014 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works. IEEE, 355–362.

[12] Alexandra Boldyreva. 2003. Threshold signatures, multisignatures
and blind signatures based on the Gap-Diffie-Hellman-group signature
scheme. PKC 2567 (2003), 31–46.

[13] Dan Boneh, Manu Drijvers, and Gregory Neven. 2018. Compact
multi-signatures for smaller blockchains. In International Conference
on the Theory and Application of Cryptology and Information Security.
Springer, 435–464.

[14] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short signatures from
the Weil pairing. In International conference on the theory and applica-
tion of cryptology and information security. Springer, 514–532.

[15] Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine fault
tolerance. 99, 1999 (1999), 173–186.

[16] Jo-Mei Chang and Nicholas F. Maxemchuk. 1984. Reliable broadcast
protocols. ACM Transactions on Computer Systems (TOCS) 2, 3 (1984),
251–273.

[17] George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair.
2015. Distributed Systems Concept and Design. Number 5. pearson.

[18] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and
Liuba Shrira. 2006. HQ replication: A hybrid quorum protocol for Byzan-
tine fault tolerance. OSDI 2006 - 7th USENIX Symposium on Operating
Systems Design and Implementation (2006), 177–190.

[19] Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. 2018.
Dbft: Efficient leaderless byzantine consensus and its application to
blockchains. In 2018 IEEE 17th International Symposium on Network
Computing and Applications (NCA). IEEE, 1–8.

[20] Tyler Crain, Christopher Natoli, and Vincent Gramoli. 2021. Red Belly:
a secure, fair and scalable open blockchain. In Proceedings of the 42nd
IEEE Symposium on Security and Privacy (S&P’21).

[21] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels,
Ahmed Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün
Sirer, et al. 2016. On scaling decentralized blockchains. In International
conference on financial cryptography and data security. Springer, 106–
125.

14

http://arxiv.org/abs/1712.01367
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/2658994
https://doi.org/10.1145/2658994

[22] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus
in the presence of partial synchrony. Journal of the ACM (JACM) 35, 2
(1988), 288–323. https://doi.org/10.1145/42282.42283

[23] Ittay; Eyal, Adem; Efe Gencer, Emin; Gun Sirer, and Robbert Van Re-
nesse. 2016. Bitcoin-NG: A Scalable Blockchain Protocol Ittay. USENIX
Symposium on Networked Systems Design and Implementation (NSDI
’16) (2016).

[24] Michael J Fischer. 1983. The consensus problem in unreliable distributed
systems (a brief survey). (1983), 127–140.

[25] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai
Zeldovich. 2017. Algorand. SOSP’17 (2017), 51–68. https://doi.

org/10.1145/3132747.3132757 arXiv:1607.01341
[26] Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon

Kuhnle, Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat, and
Klaus Stengel. 2012. CheapBFT: Resource-efficient Byzantine fault tol-
erance. In Proceedings of the 7th ACM european conference on Computer
Systems. 295–308.

[27] Richard Karp, Christian Schindelhauer, Scott Shenker, and Berthold
Vocking. 2000. Randomized rumor spreading. In Proceedings 41st An-
nual Symposium on Foundations of Computer Science. IEEE, 565–574.

[28] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas
Gailly, Ewa Syta, and Bryan Ford. 2018. OmniLedger: A Secure, Scale-
Out, Decentralized Ledger via Sharding. Proceedings - IEEE Sympo-
sium on Security and Privacy 2018-May (2018), 583–598. https:

//doi.org/10.1109/SP.2018.000-5

[29] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and
Edmund Wong. 2007. Zyzzyva: Speculative Byzantine fault toler-
ance. SOSP’07 27, 4 (2007). https://doi.org/10.1145/1658357.

1658358

[30] Jae Kwon. 2014. TenderMint : Consensus without Mining. the-
Blockchain.Com 6 (2014), 1–10. https://tendermint.com/static/
docs/tendermint.pdf

[31] Leslie Lamport and Digital Equipment. [n.d.]. The Part-Time Parliament.
16, May 1998 ([n. d.]), 133–169.

[32] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzan-
tine Generals Problem. ACM Transactions on Programming Languages
and Systems (TOPLAS) 4, 3 (1982), 382–401. https://doi.org/10.

1145/357172.357176

[33] Jian Liu, Wenting Li, Ghassan O Karame, and N Asokan. 2018. Scalable
byzantine consensus via hardware-assisted secret sharing. IEEE Trans.
Comput. 68, 1 (2018), 139–151.

[34] Jean-philippe Martin, Lorenzo Alvisi, and Senior Member. 2006. Fast
Byzantine Consensus. 3, 3 (2006), 202–215.

[35] Christopher Natoli, Jiangshan Yu, Vincent Gramoli, and Paulo Esteves-
Verissimo. 2019. Deconstructing Blockchains: A Comprehensive Survey
on Consensus, Membership and Structure. (2019). arXiv:1908.08316
http://arxiv.org/abs/1908.08316

[36] Brian M. Oki and Barbara H. Liskov. 1988. Viewstamped replication:
A new primary copy method to support highly-available distributed sys-
tems. Proceedings of the seventh annual ACM Symposium on Principles
of distributed computing (1988), 8–17.

[37] Nasrin Sohrabi and Zahir Tari. 2020. On the scalability of Blockchain
Systems. IEEE International Conference on Cloud Engineering (2020),
1–12. https://doi.org/10.1145/1544012.1544020

[38] Nasrin Sohrabi and Zahir Tari. 2020. ZyConChain: A Scalable
Blockchain for General Applications. IEEE Access 8 (2020), 158893–
158910.

[39] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and
Lau Cheuk Lung. 2009. Spin One ’ s Wheels ? Byzantine Fault Tolerance
with a Spinning Primary. (2009). https://doi.org/10.1109/SRDS.

2009.36

[40] Yang Xiao, Ning Zhang, Jin Li, Wenjing Lou, and Y. Thomas Hou. 2019.
Distributed Consensus Protocols and Algorithms. Blockchain for Dis-
tributed Systems Security 25 (2019). https://doi.org/10.1002/

9781119519621.ch2

[41] Yang Xiao, Ning Zhang, Wenjing Lou, and Y. Thomas Hou. 2020. A
Survey of Distributed Consensus Protocols for Blockchain Networks.
IEEE Communications Surveys & Tutorials c (2020), 1–1. https:

//doi.org/10.1109/comst.2020.2969706 arXiv:1904.04098
[42] Cheng Xu, Ce Zhang, and Jianliang Xu. 2019. vchain: Enabling verifiable

boolean range queries over blockchain databases. In Proceedings of the

2019 international conference on management of data. 141–158.
[43] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and

Ittai Abraham. 2019. Hotstuff: Bft consensus with linearity and respon-
siveness. PODC 2019 (2019), 347–356.

[44] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. Rapid-
Chain: Scaling Blockchain via Full Sharding Mahdi. Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security - CCS ’18 (2018), 931–948. https://doi.org/10.1145/

3243734.3243853

15

https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1109/SP.2018.000-5
https://doi.org/10.1109/SP.2018.000-5
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1145/1658357.1658358
https://tendermint.com/static/docs/tendermint.pdf
https://tendermint.com/static/docs/tendermint.pdf
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
http://arxiv.org/abs/1908.08316
https://doi.org/10.1145/1544012.1544020
https://doi.org/10.1109/SRDS.2009.36
https://doi.org/10.1109/SRDS.2009.36
https://doi.org/10.1002/9781119519621.ch2
https://doi.org/10.1002/9781119519621.ch2
https://doi.org/10.1109/comst.2020.2969706
https://doi.org/10.1109/comst.2020.2969706
https://doi.org/10.1145/3243734.3243853
https://doi.org/10.1145/3243734.3243853

	Introduction
	The Model
	Tree Structure
	Cryptographic primitives

	Paths
	FPSiM Path
	FPSCaM Path
	SPSiM Path
	SPSCaM Path

	Blockchain Adopting SAZyzz
	Evaluation
	Setup
	Performance
	Performance Results of ZyConChain
	Scalability

	Related Work
	Conclusion

